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i

• i i. INTRODUCTION

, Creep has been a topic of Investigation for many decades. Meaningful

: . results have been obtained by investigators both from the micromechanistic ,_

approach and the macroanalytical or continuum mechanics approach. A rich _

, literature is available and references may be found in the books by

• Garofalo [i], Odquvist [2], and Rabotnov [3], among others.

; Both the micromechanlstic and continuum approaches can lead to fruitful _i

results and each can benefit from the other. "The micromechanistic approach

provides knowledge of the processes that control creep and provides guide- •_

lines for defining more clearly material properties and for designing better

materials for specific applications. The macroanalytical approach can pro-

vide basic relations that are broad in scope and can lead to improved pro- ,_
,_

cedures for designing structures." _:!

The purpose of this report is to discuss further the behavior of creep

In metals using the approach of continuummechanics. Several theories have

been proposed in the literature to describe creep using this approach. How-

ever, there still exists an unresolved problem related to the role played by

strain-hardening during creep. This problem is important in the investiga-

tion of creep subject to variable stress. •

_ In most investigations, the subjects of stress-straln relation and _

creep are treated separately, so that they do not bear direct relationship ._

between them. In the writers' view, the aforementioned fact contributes '_

greatly to the difficulty associated with the Investigation of creep under

variable stress. Fortunately, recent progress in the understanding of the

_ straln-rate and strain-rate history effect in the theory of constitutive -_I
r

I The words of Garofalo [i] are being quoted.
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equation has made it possible to devise a unified approach which would bring !

diversified material behaviors, such as constant-strain-rate stress-strain

relation, creep, and stress relaxation into a common workframe.

The present report is written with such thought in mind. This viewpoint

! is shared by such research workers as Valanis and Lalwani [4] and Cernocky

and lrempl [5]. In this unified approach, creep is viewed as a special case

of the general mechanical behavior of material. The constitutive creep

equation is reduced directly from the general constitutive equation of the

material under study but with the condition of constant stress imposed, iSince the constant-strain-rate stress-strain relation is also reduced from

the same general constitutive equation, it is evident that a correlation

between the two areas of interest can be established. Thus, material con- _

stants and functions determined from the constant-strain-rate stress-strain _

curves will appear without alteration in the creep equation. The number of

unknown parameters in the creep equation is thus greatly reduced. ',

• In this report, Valanis' endochronic theory of viscoplasticity [6,7,8]

is applied to tackle the problems associated with creep. The endochronic

theory has been previously applied to investigate the creep behavior of g

metallic materials. Valanis and Lalwanl [4] developed a nonlinear evolution

-. equation for the thermodynamic internal state variables using the concept of ,_

absolute-reactlon-rates theory. The equations are then applied to predict i
_: creep at moderately large strains under constant stress from the experimental

- data obtained in stress relaxation. Wel [9] investigated creep using the

Gibbs free energy formulation and the stress-defined intrinsic time.

The approach taken in this investigation is different from those men-

• tioned above, although all are within the framework of the endochronic

_t

_ ,.,_

4

i
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theory. In particular, the concept of intrinsic time introduced by Valanis

[8] Is employed in thls investigation.

• The probleme of creep recovery ard stress re!axation are also treated ,¢_

using equations derived frow the same general constitutive equation by >.

• :_ tmpostng appropriate constraint for each case. It is shown in this report ":ii•
, that the theory agrees quite well with experimental results of Wang and :+

; Onat [101 for Aluminum ii00-0 at 150"C (300"F).

'_,

:- }+

._"

+

2

+!
.!

£ -/

b_

-2

+, ,
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2. BRIEF S_Y OF ENDOCHRONIC THEORY

' OF VISCOPLASTICITY _
p

The endochronic theory of viscoplasticity developed by Valanis [6,7]

is based on the notion of intrinsic time and the thermodynamic theory of ::

internal variables. Since most of the materials are, in general, strain

history dependent, a time measure d_ is defined such that

Y

d_2 Pi kLdCi dCk£ dr2 _":' + g (i)
, : = J J :"

where _iJ is the strain tensor and PiJk£ is generally a function of cij and j.%

a positive definite material tensor; g is a material function of ¢iJ; and _

t is the real time. In addition, a time scale z(_) is introduced such that .

dz/d_ > O.

This concept together with the thermodynamic theory of the internal _

variables gives the following explicit constitutive equation for isotropic

• materials under small isothermal deformation:

z _Ckk z _ dz' (3) _
: oij = 61j l(z - z') dz' + 2 _(z - z')

where oij is the stress tensor, etj is the deviatoric part of ¢iJ; _i"3 is !t

the Kronecker's delta; and X(z) and _(z) are heredity functions. But the !i

definition of intrinsic time in equation (i) has led to dlfficulties in

cases where the history of deformation involves unloading. Valanis [8] _

has since introduced a new concept of intrinsic time to overcome these :_

difficulties. In the one-dimensional case the new _.ntrinsic time _ is !_

defined as

N L
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f

!• where k1 is a positive scalar such that 0 < k 1 < 1 and E0 is the elastic

moduius. Generalizing to three dimensions and r Internal variables, a _

strain like tensor eij is defined as _

' eiJ = ciJ - _IJk£ °k£ (5)

:i
and

QiJ = eij - _ sij (6) i

where ¢iJk£ is a positive definite symmetric fourth-order tensor; QIJ is ii_.

the deviatoric part of 0ij; U0 is the shear modulus; and sij is the devla-

toric part of oij. Based on the formulation in reference [6], the response ._

of metals in the small deformation region with an elastic hydrostatic re- .

sponse can be written as

/[

akk = 3K ekk (7) -

" and i

slj " 2 SO U(z - z') _z' dz' (8) ..

where K is the bulk modulus. If the function u(z) is defined as ;_

iu(z) - u0 C(z) (9) ,

1979014393-007
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where G(O) " 1, and using the Laplace Transformation technique, equation (8)

together with equations (6) and (9) reduce to

IO _ dz' (10)eij= 2_0 O(z - z') dz'

where O(z) is related to GCz) by the integral equation

IO d___Gdz' = G(z) (ll)
O(z) - k1 O(z - z') dz'

The solution of this integral equation in the case of two internal variables

is obtained by the Laplace transform technique under the assumption of k1

approaching to 1. The result is

E0

E00(z) = a:o 6(z) + El • -_z (12)

where a O, a, and E1 are material parameters and 6(z) is the delta fun_tion.

In the case of untaxial stress, the constitutive equation is given by

0

I2 dO dz' (13)
O = g0 0(z - z') dz'

where 0 - ¢ -_0 is the plastic strain, and equation (4) can be written as

d_ - IdOl (14)

Because of the complexlty of the constitutive equation and the fact that
the number of material parameters increases vith the number of internal
variables, it is natural to strive for the minimum number of internal
variables which will suffice in the accurate and acceptable prediction #
of the material response. Two internal variables are used throughout
this work.

1979014393-008
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The new form of the endochronlc theory has recently been extended by

gu and Yip [11] to describe the strain rate and strain rate history effects

of material behavior. In this connection, it was shown that the intrinsic

t/me is governed by the relation

d_ - k(O) [dO[ (15)

where 0 is the plastic strain rate.

By combining equations (12), (13), and (15) it was shown that yield

stress o can exist and is related to the strain-rate by
Y _

o

ay - kCg)

o
where o is the initial yield stress at reference strain-rate. Making use

Y

of the expression (Ref. [6])

1
z = _ in(l+ S_) (17) ,

where B is a material constant, the constant-plastic strain-rate stress-strain

relation was obtained

o = Oy(1 + BIO) + (o ° - Oy)(1 + BlO)[1 - (1 + BIO) -n] (18)

In whlch

E t _

B1 _ ,= kB = o (19)
o

n - _ + I (20) -

and o Is the intercept of the asFmptotlc llne of equation (18) with theo

• stress axis; g t is the tangent modulus of the afor_entioned aey_ptotic line.

1979014393-009



1_ The straln-rate sensitivity function k(O) was determined from the

experimental constant-strain-rate stress-strain curves. It ,ass found that ._'

the followins function fit the data nicely for annealed aluminum in the

strain-rate range of 10 -4 103 s "1

k(_) - 1 - Bs los (21) '

In equation (21), Bs is a material constant and _R is a reference strain-rate.

The expression (21) was also shown in the same report to be applicable to

mild steel in the strain-rate ranse of 10 -4 ~ l01 s -1.

In Wu and Yip [11] this form of constitutive equation was also used to

investigate the strain-rate history effect by means of low-htsh and high-low
/

strain-rate change loading sequences, i

!

Q
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"_ 3. CREEP OF ALUMINUM 1100-0

The constitutive equati_ (13) and the n_ definition of intrinsic

t_e given by Eq. (15) are n_ applied to describe the creep phenomenon.

To achieve this objective, a careful control of the entire creep test is

in order. In a conventlo_l creep testing, a weizht pan loaded with weJghts

_ is gradually released to avoid _pact on the spec_en. The creep strain is

then the additio_l strain developed over the init_l strain as t_e elapses.

The _itial etra_ referred to is developed initially by the deed weights.

_ The initial strain history is usually not recorded in the creep test.

Due to this nature in exper_entation, any theoretical work a_ing at the

description of the creep cu_e is at best an approxi_tion.

In the present representation it is assumed that a creep test consists
/

of two stages. The first stage is ass_ed to be a tensile testing at con-

stant plastic strain rate _ . During this stage the intrinsic time increaseso

-_ fr_ zero to z . _e seco_ stage is the creep stage where the stress is
I o

kept constant at o* and the intrinsic time increases fr_ z to z as creep
O

strain developcs. Thus, equation (13) becomes

, Z O Z O

! o* = E° 6(z - z') dz' + E1 e -a(z-z') dz'I

'i

I 6(z - z') dz' + E1 e -- (22)i + Eo dz' dz'
T

i O O

i in which the fc_,ction O(z) is given by equation (12).

I

In the case of long te_ creep, t_ effect of the initial strain history is
negligible a_ the etress-t_e history _y be represented by the Heaviside ,
step function. In the case of short time creep, the initial strain history
is found to _ve sign_ficsnt effect on the subsequent creep be_vior.

1979014393-011
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It should be noted that during the first stage of loadlns for

aluminum, the follovtns equation must be satisfied

1 %) (231s° - _ ln(1+ _ k°

vhere S Is • materlal constant that appeared In equation (17) and Is

- o )deteralned from the quasl-statlc stress-straln curve; k° k(9 ; and eo Is

the pla_clc strain at the end of the first stage vhen z = zo

Figure I shovs a typlcal Inltlal strain history recorded during a

convenClonal creep test. Approxhnatln8 thls inltlal strain history by a

straight 11ne, Ic is seen that at z = z o, "de/dtlz.z _ eo" Since stress
o

depends on the straln-rate and Its history, the actual stress at z Is noto

the same as that calculated using equation (18) by assumlng a constant
o

Therefore, the stress must be correcte_ at z ° to agree vlCh reallty. Thls

correction of stress rill be accounted for In the subsequent discussion

concerning the second stage of the creep test. It is remarke,], however,

chat If the creep test Is yell-controlled so that the .iret stage of test

Is truly a constant e test. The correction In stress mentioned above iso

then not necessary•

Equation (22) is the constitutive creep equation vhlch may be slmpllfled

by lettin8

z e_a(z_z, ) dO dz'R(z) = E1 dz---T
(24)

5o

Thus, equation (22) reduces Co

'_ * o dO

:i o = l(z) + R(z) + oy d"z (25)
b

where

I(z) = C1 • -az (26)

1979014393-012
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and

tCI - - i (27)
0

Ic say be 8hotm by dtfferenttactns (24) thaC

• _ dR de
" E1 d--i"a_ (28)

which lud5 to

_. - y - - _ (29)

by use of gq. (25). The constants appeared in the above eq,-_lon are slven

by

E1
k - --+ a (30)

0o
Y

= _ a* (31)' C2 u
ay

Durins the creep process, the intrinsic time is defined by

dC- kc(_) IdeJ (32)

where kc(e) is the strain-raCe sensitivity function under creep condition.

The function kc(0) is different from k(0) in seneral, where the latter

function was defined _n (15) under constant-strain-raCe condition. Since

the creep behavior depends on stream as s parameter, the _unctton kc(6) may

mlmo depend on atre8_ as a parameter.

mr
- s
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Using (32), (26) end (17) Equation (25) reduces further Co

kc(e) - Y eBZ/(cr _ - R(z) - C1 • -az) (33)

: _ Given a function kc(_) at the strain rate range of creep, equation (33) can

i thus lead to the determination of a creep curve.

: The straln-rate sensitivity function kc(0) will now be discussed. It

' is assumed that the functlonal form of equation (21) is all11 valid for

creep. Thus,

tnwhtch 0 denotes the creep rate and the constant B depends on stress as
C

a parameter. The dependence of B on stress should be further investigatedC
J

experimentally.

The creep curves are determined by use of the Newton method of finite

difference. The algorithm used in the calculation is presented in Appendix

i:_ (A).

To compare the theory with experiment, two sets of experimental results

•-' are needed. They are the set of constant-straln-rate stress-straln curves

and the creep curves. These two sets of data should be obtained for the

same material with the same heat treatment and tested at the same constant

¢

temperature. The only experimental data that are available to the authors

are those for Aluminum 1100-0. Creep tests were conducted at 150°C (3000F)

t by Wang and Onat [10] and the constant-strain-rate stress-strain curves _

were recorded by Senseny, Duffy and Hawley [12] at 25°C (298°K) and 2500C

10-4 !02 -1(523*K) for shear-strain rates of 2 x s -1 and 3 x s . To determine _-

the material constants, a set of experimental constant-strain-rate stress-strain i

i.
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curves at 150"C were estimated by linear interpolation from the curves of i

lef. [12].

In the creep tests by Nan8 and Onat specimens were prepared from two

dtffer_t rods for the tests referred. Thus, different creep curves were
t

; obtained for the two groups of specimens even with the same heat trea_nent

_ and same constant stress. The material properties for the two groups of
i

i specimen8 are therefore considered to be slightly different. The followingr

*
t_o sets of material constant have been detet'_ined:

Specimens Group I Specimens Group II

= 1.30 x 10-5 s-1 eReR = 1.40 x 10- 5 s-1

= 1.20 × 10-4 s-1 e - 1.20 × 10-4 s-1
O O

a - 4.622 x 102 a - 5.714 < 102

B = 4.444 B = 5.494 '

E1 = 6.596 x 103 HPa (9.566x 105psl) E1 ffi8.154 x 103 HPa (I.183x 106psl)

B " 3.643 x 10-2 B " 3.339 x 10-2
_? s s

" Eo = 6.895 x 104 _a(l.0x107 psi) E = 6.895 x 104 HPa (i.0 x107psl)

r O0 = 13"790 HPa (2000 psi) o° 13.790 HPa (2000 psi) '
Y Y

The theoretical and experimental resulta are shown in Figures 2-4 for

• specimens Group I and in Figures 5-7 for Group II. The values for Bc and

i the stress correction mentioned earlier are listed in Table I for each stress .':

level. The results show that good agreement has been obtained for Group I ;_"

, specimens. For Group II, only the three cases with intermediate stress *-

o
*The constants a, B, E, E1 , Oy, Bs and e_ are determined from the constant-K

8train-rate stress-strain curves. The strain rate _ du._ng the first stage
: of the creep test must be chosen so that eo and zo a°e consistent with

equation (23). Thus, eo is the only parameter which needs to be assigned
: In the description of a conventional creep test.

!

ii ,T
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levels have achieved reasonably good agreement using the constants llsted.

The agreement is not good for the two lower stress curves at small time and

_ also for the curve with high creep stress. It should be noted that the

present theoretlcal results have been obtained by assuming that only two

internal state variables are significant. To predict the creep curves at

widely varied stress levels, an additional internal varlable may have to be

used. Whether this is indeed the case awaits further investigation.

It may be concluded that for Aluminum 11OO-0, creep depends on the

effects of straln-hardening and straln-rate history. If B is dependent onc

stress as mentioned above, the proposed theory can reasonably describe the

creep curves with moderately varied stress levels.

i

i
7i

I
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A. CREEP RECOVERY

In this section, creep recovery is discussed by means of the constitu-

tive equation (13) with the Kernel function given by (12). The specimen is

first subject to creep at stress a* for a duration of time and then the

stress is reduced to o**. The integral in equation (13) is decomposed into

four integrals each representing a stage of the creep-creep recovery phenom-

: enon. Thus,

o** = f. + + + (35)
"o

o 1 1

The first two integrals on the right-hand side of (35) describe the creep

stage which was discussed in the previous section. The stress is then
!

reduced from o* to o** when the intrinsic time reaches z 1. The third inte-

gral represents the instantaneous elastic response during unloading. Since

the intrinsic time increases only with the plastic strain the value of this

_! integral is zero. Finally, the fourth integral represents the recovery

stage.

The first integral may be integrated to give I(z). The second integral

may be denoted by

;i
, Zl

i! RI(Z) = EO Iz 0(z - z') d-_d0.' dz' (36) _

"_i o

,

:_ It can be found by differentiation that

dRl(Z) '_
dz = -aRl(Z) (37)

i
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vhose solution is

_ Rl(Z) = C e -az (38)

:_Aere

"_ C - -e-(A-c0zl (A'a)zl - e(A-a)z _ _C2 eAzl - eAZ

(, Oy

"rod (39)

zl(z 1) = R(z1) (40)

The fourth integral is expressed as

o(z - z') dz' - a + R2(z) (41)
Eo zl y_z

where

z e-a(z - z') deX2(z) - E1 -d-_zwdz' (42)
z1

3

Therefore, the constitutive equation for creep recovery may be rewritten as

** o d8

o ffiI(z) + Rl(z) + Oy _z + R2(z) (43)

or

d_.ee . _ [o** - I(z) - Rl(z) - R2(z)] (44)dz o
o
Y

The function R2(z) may be found in closed form, which may be achieved

by differenr=ating equation (42) to obtain

1979014393-018
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dR2(z) de
dz - E1 _-_- aR2(z) (45)

Upon substituting (44) into (45), the resulting equation can be integrated.

The result is t

R2(z) " "e-AZ E1 A C1-a (A-a)z _ e (A-a)z --_C2 e Az - eAZ (46)

where
!

C. = C1 + C (47)

• , E1 **
¢2 " o o (48) .

O
Y .

/
and

R2(zI) - 0 (49)

de
Therefore, it is obvious from equation (44) that _z is a function of z

only if _ and a are specified. Using now equations (32) and (17),

equation (44) can be written as

O eBZ

** . Oy (50)kc (e) = _+ **
o - I(z) - Rl(Z) - R2(z)

**

in which k denotes the function k (e) during the stage of recovery. The
C C

I

significance of sign "_" will be discussed later in this section. It is

noted from equation (50) that k is a function of z.
C

A procedure similar to that used for creep stage is now followed.

Assuming chat the relation (32) holds also during the stage of recovery,

the strain-raCe at recovery may be expressed by

1979014393-019
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(l-k**(z))IBc
- eR • (51)

An algorltlm of numerical calculation for creep recovery Is presented In

" Appendix (B) '
\,_ " 2

The experimental results of Wang and Onat for Alumlnum 1100-0 are again ;

• _ used for comparison. Three examples were considered in this calculatlon.

The first (Test I) Involved a specimen crept at constant stress of 24.13 MPa
f

i (3500 psl) for 4 hours and then unloaded to a stress of 1.38 MPa (200 psi)

which was far below the yield stress of 13.79 MPa (2000 psl). In thls cal-

culation, the equation (50) took the minus sign since the normal strain

recovery effect was predominant at such a low stress of _ = 1.38 MPa.

The normal strain recovery effect wlll be elaborated later In this section. :

For thls case, the material constants were determined by the method i

described in the previous sections as follows:

_ - 1.20 x 10 -4 s -1
o

= 1.40 × 10"5 s-I

g

B = 5.259

i a = 4.944 x 102

E1 = 7.06 x 103 MPa (1.024 x 106 psl)

_c = 3.858 x 10-2

Both theory and experiment are shown in Fig. 8 for comparison.
,. ,r

_i The second and the third examples (Test II and llI) involve specimens

loaded at constant stress of 27.58 MPa (4000 psi) for one and four hours, ._

_: respectively, and then unloaded to a stress of 25.86 MPa (3750 psi). In i

"_, both cases, equation (50) took the positive 81gn since the forward creep _

effect was predominant at the stress specified (25.86 MPa). The details

i
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concerning the forward creep and the recovery effects will be further

discussed, i

, For these two cases, the material constant were determined as: :

' - 1.2ox Io-4 -i
! o s
i _ = 1.40 x i0"5 s"I

I B = 5.494

a = 5.714 x 10 2

i El = 8.16 x 103 l_a (1.183 x 106 psi)

8c = 3.339 x 10-2

Figure 9 shows the theoretical and the experimental results. It is seen

that the agreement is quite good for a short time. The results also show

that the amount of forward creep during the process of recovery is signifi-

cantly affected by the length of creep time betore unloading. For the same _.

creep condition, the earlier the unloading takes place the greater the for-

ward creep rate.

In Test II, the theoretical curve rises above the experimental curve

four hours after unloading has taken place. Its implication is that the

present theory using two internal state variables is not adequate in de-

scribing creep recovery at larger time. For better accuracy additional

terms (corresponding to more internal state variables) may have to be

introduced in equation (12).

The nature of creep recovery will now be further discussed. Experiments
**

show that a crltlcal stress o exists. If during creep recovery, o >
cr °or i

then forward creep will occur, i.e., the recovery curve has a positive slope. _

i If o < Ocr, then normal strain recovery is found which corresponds to the i

curve with negative creep rate. This experimental finding has been reported
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in the llteratura (see, for instance, Ref. [1], p. 24), In particular the

exper_unts oz Wans and Onat [i0] also conflrmed this observation. In the

three examples mentioned earlier in this section, Test I is the case of

normal strain recovery with a < Oct and Tests IT and Ill are the cases of

forward creep with o > act.

The observed phenomena of fo_ard creep and normal strain recovery

will now be explalned uslng the present theory. Just before unloading,

the stress is o and the intrinsic time is denoted by z I. From equation (25),

the followlng equation is obtained

* It,i>+_c-_>+oO dO)0 m Y _ ZI (S2)

** +

l_n_btely after unloading, the stress is ° , the intrinsic tlme is zl,

and from (43) the equation below is obtained

** ) T (o - ICz ) + RICZ ) + 0o dO (53)
y _._

But I(z), R(:)_ RI(Z), and R2(z) are all continuous so that at zI,

Rl(z_) = R(z_) and I(z_)= I(z_). Therefore, equations (52)and (53)

can be combined to yleld

o - o = OY Zl Y zl

,, Furthermore, by using equations (32) and (17), it may be found that

) o

d0 I - _ eB'Id--_z'_ kc (55)
4
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l 2l
and

I: 1 kc i

The "_" sign in (56) corresponds to the absolute value sign in equation (32).

In the case of forward creep, where e • 0, the positive sign should be used;

whereas the negative sign is used when the case of normal strain recovery

is being considered, i.e., when e < 0.

Substituting equations (55) and (56) into (54), the following expres- i

sion for the strain-rate sensitivity function is obtained

"" o'-o"7kc - ± .... (57)
oo eBZl J

Y

In the special case of no unloading, i.e., o = o , equation (57) leads

to kc = kc (only the positive sign is meaningful due to positive creep

rate), which of course represents the case of creep.
+

When at z 1, equation (50) is reduced to

o BZl

**. +. Oy •
kc (z I) = ± ** (58)

o - Z(z I) - Rl(Z I)

Utilizing this equation, the following observations may be made. On the

right-hand side of equation (58), the denominator is zero when o = I(zI) _

+ Rl(Zl). Therefore, a critical stress Ocr may be defined so that when

** :*(._ _0 = Oct, k ) approaches to infinity, which in turn gives e = 0 by use ._

!of equation (51). Thus, creep recovery at the critical stress a will

cr !
result in a mero strain recovery rate at z 1. For z > Zl, the rate of !

B
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recovery is governed by equation (50) in which R2(z) # 0. For o** > Ocr, "i

, the denominator is greater than zero, thus the plus sign must be chosen in i

(58) for to be positive. As mentioned earlier, the plus sign corre-c

spends to the case of forward creep. On the contrary, if o < o , then
cr :

the minus sign should be used, which of course corresponds to the case of

'_ normal strain recovery.

i A further observation related to equation (58) is that in the case of

go_ard creep, the greater the stress _ is, the smaller is kc ; hence,

the greater is the rate of forward creep. In the case of normal strain

recovery, the reverse is true, i.e., the smaller the stress _ is, the

smaller is k ; thus, the greater is the rate of recovery. The abovec

observation agrees with Garofalo [1] and Wang and Onat [10].

J

!t
i
!

I
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5. STRESS RELAXATION l.

I

A prel/mlnary investigation of stress relaxation is reported in this

section. Due to the non-availabillty to the authors of the stress relaxa-

tlon data for Aluminum 1100-0 at 150'C (300"F), only the theoretlcsl results

will be discussed. __

To treat the subject of stress relaxatlon using the present theory, it

18 recalled that

d8 = de - do (59)Z
0

During the process of stress relaxation, the total strain is kept constant.

Thus, ._

4

. _i c6o)E
0

and the plastic straln-rate is seen to be related to the rate of change of

stress during stress relaxation.

The constitutive equation governing stress relaxation is again reduced

from the general constitutive equation given by (13). The relaxation test

is divided into two stages as in creep test. The first stage is that of

the constant-strain-rate tension test and the second stage is the stage of

stress relaxation. ._
?

It may be shown that the following governing equation can be reduced

directly from equation (13): ,_

o de

o(z) = I(z) + R(z) + Oy d-_ (61)

where I(z) and R(z) were previously defined in equations (26) and (24).

1979014393-025



t
The symbol z is _satn used to denote the intrinsic time when the second

stase of test besims.

For stress relaxation, the fol_vin8 equations are again obtained

de
= Zx - aR (62)dz dz

d OO= ._I. [o(z) - I(z) - R(z)] (63)
d z o¢,

Y

These equations may be combined to yield a first order differential equation

in R(z). The followin_, solution for R is obtained by requirins that R(z o) =0:

1.-..i - ol •y Zo

where & and C1 are defined in (30) and (27) and

E1
g(z) -_ o(z) (65)o

0
Y

During the relaxation process, the intrinsic time is defined by

dc = kr(e)ldel (66)

where kr(e) is the strain-rate sensitivity function under the condition of

relaxation. This function must be different from kc(0) which is the strain-

rate sensitivity function for creep. Durlns relaxation the total strain Is

kept constant and thls constraint should be reflected throush kr(e). It

is anticipated that kc(e) and kr(e) are related. Hovever, no explicit
4

relationship between these two functions can be obtained without further

experimentation.

1
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It te assumed chat the fu_:tlo_ kr(e) takls the fnllowi_g form

kr(6)- I - Br lu (:_,) (67)\era

where 8r _ay deptnd on the magnitude of plastic strain vhen relaxation stake

bagLns. The fact that the theoretical results to be presented later agree

qualtr_tttvely with the usual stress relaxation curves indicates that the

functional form glven by (67) is reasonable.

It may be obtained from (63) and (66) that

oo e _z

kr (z) - o(z) - _(z) - R(z) (68)

In addition, equation (60) leads to

(1-kr)/_ r
_(s) = -Bo__ • (69)

Thus, equations (68) and (69) govern the relaxaclon behavior of a material.

_n 81gorlthm for the numerlcal calculation of the relaxatlon curves are

given In App_adlx (C). The theoretlcal results are shove in Fig. 10.
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6. CONCLUSIONS

The endochronic theory of viscoplasticlty has been applied to discuss

creep, creep recovery, and stress relaxation at the small strain and short

} time range. The following conclusions may be drawn from this investigation:

(1) The governing constitutive equations for constant-strain-rate

stress-strain behavior, creep, creep recovery, and stress relaxation have

been derived by imposing appropriate constraints on the general constitutive

equation (13).

(2) A set of material constants has been found which correlate strain-

_" hardening, creep, creep recovery, and stress relaxation.

(3) The theory predicts with reasonable accuracy the creep and creep

recovery behaviors at short time.

(4) The strain-rate history at prestraining stage affects the subse-

quent creep.

(5) A critical stress o has been established for creep recovery.cr

If ** **
> Ocr, forward creep viii occur. If o < Ocr, then normal strain

_ recovery will take place.

(6) The correlation.between the st2_in-rate sensitivity functions

k(e), kc(e), and kr(e) cannot be obtained without further experimental

investigation. .:
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APP_DLX CA) - Algorithm for the Computation
of Creep Curves

Based on equations (33) and (34), the creep curves are computed by use

of the Newton method of finite difference. The following steps are suggested

i for computing creep curves obtained by the conventional method of creep ?

testing:

Step 1: Determine the material constants a, B, Eo, E1 , o_, 8s, and eR from

the experimem'al constant-strain-rate stress-strain curves.

Step 2: Compute the plastic strain 6 - c - o /E ° where _o and o areo o

known values.

3: Try and error procedure is used to determine eo" For each eo chosen,Step

Co and z ° can be computed by use of equations (21), (32), and (23).

The rest of the procedures are then followed to complete the creep

curve. However, if the computed creep curve does not agree with

the experimental curve, a new value of 0 is assumed.
" O

? _
Step 4: For each step, compute k(n)(e (n)) by substituting z "n" and o into

c

equation (33), where n starts from zero and is a positive integer.

Step 5: Use equation (34) to compute _n).

Step 6: Choose a reasonably small step size At and compute A%(n) = _(n) At

:_ and A_(n) = k(n)_8 (n).c

Step 7. Set t(0) = O, _(0) = _o' z(O) = Zo' then compute

t(n+1)- t(n)+ At i
I

For well controlled creep test, i.e., eo " c_nstant, the quantities %o and

8o are known. The intrinsic time zo and the stress o* can be calculated
from equations (21), (23), and (18). Noting that the total strain at the

; beginning of creep stage is _o = 8o + o*/Eo, the computation may proceed
by following steps 4 through 8.
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e(n+l). e(n)+ _e(n)

¢(n+l) (.+i) (.)" -6 +¢ s

g(n+1) . g(n) + gg(n)

[I__(n+i)].(_)-.(")+_ i.Li+B,(_)
• C

: The ¢(n) vs. t(n) proflle is the computed creep curve.

Step 8: Specify a terminal time T. I_ t(n+l) is greater than T, stop

the computation. Otherwise, return to Step 4 with t (n) 8 (n)

¢(n) _(n) and z (n) replaced by t (n+l) B(n+l) ¢ (n+l) _(n+l)

and z (rrbl), respectively.

i

! i

_i

L_ ..
, . 1,
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APPENDIX (B) - Algorithm for the Computation
of Creep Recovery Curves

Curves of creep recovery may be computed from equations (50) and (51)

using the following procedures:

Step 1: Use all previously determined material constants.

i Step 2: Calculate the critical stress o = l(z I) + Rl(Zl).

cr

** **

Step 3: Compare o with o . If o > o use positive sign in equation
cr cr'

! (50). Otherwise, the negative sign should be used.

i Step 4: For each step, compute k**(n) by substituting z(n) and o into
C

equation (50), where n starts from zero and is a >ositive integer.

I Step 5: Use equation (51) to compute _(n).

Step 6: Choose a reasonably mall step size At and compute AO(n) = 8(n)At

and A_ (n) = k**(n)80 (n).c

Step 7: Set t(0) = tI, _(0) . _' z(0) . Zl where tI is the time at the

onset of recovery. Compute ¢(0) = ¢i - (o* - o*_/E)o' where ¢(0)

i and ¢i are the recovery and creep strain at tI, respectively.

Step 8: Compute t(n+l), e(n+l), ¢(n+l), _(n+l), and z(n+l) using the

t(n)equations in Step 7 of Appendix (A). The ¢(n) vs. profile is

the computed creep recovery curve.

Step 9: Same as Step 8 of Appendix (A).

.
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APPENDIX (C) - Algorithm for the Computation
of Stress Relaxation Curves

Equations (68) and (69) are used for the compuation of the stress

relaxation curves. In the compuatlon of R(z) from (64), the function g(z)

is assumed plece-wlse linear. The following steps are followed:

Step i: Use same material constants as those in Appendix (A).

" Step 2: Compute %, _o' and z ° using Steps 2 and 3 of Appendix (A).

_(n) , t(n) " 0, whereStep 3: When n = 0, set o (n) = o:, - Co, z (n) = z°

n starts from zero and is a positive integer, c° is the initial
I

relaxation stress.

Step 4: For each step, except n - 0, compute R(z (n)) with the assumption

of piece-wise linear o(z):

r

o(n) _ o(n-l) z(n-l) o(n-l)o(z) = (z-) +
Azn-1

'_ If n - 0, set R(z (n)) - 0.

": Step 5: Compute k (n) by substituting z (n), o (n), and R(z (n)) into
r

equation (68). n starts from zero in this computation.

Step 6: Calculate stress rate _(n) from equation (69).

Step 7: Choose a reasonably small step size At and compute the following: ¢

(n) n)

.,: k(n) _(n) "I
A_(n) = r nt "

0

Az(n) "
I+B¢

7

i

i'
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I Step 8: Compute

_ . t(n+l) . t(n) + _t (n) .

i _(n+l) . aCn) + Aa(n)

i _(n+l) . _(n) + _(n)
g

, z(.+l). z(n)+ _z(n)

The u(n) vs. t(n) profile is the computed stress relaxation curve.

" Step 9: Specify a terminal time T. If t(n+l) is greater than T, stop the

" computation. _cherwlse, return to Step 4 with t(n), o(n), _(n),

and z(n) replaced by c(n+l), o(n+l) _(n+l), z(n+l), respectively.

I

i

'_
t

?

o
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TABLE 1

Corrections in Creep for Various Creep Stresses

.!

:I Spec4men Creep Stress 8 Stress Correction
Group MPa (psi) c HPa (psi)

I 24.13 (3500) 8 s -1.990 (-288.68)

25.86 (3750) 0.71 Bs -1.643 (-238.34)

:i 11 17.24 (2500) 8s +0.454 (+65.80)

i 20.68 (3000) 8 -0.869 (-125.97) , L
S

24.13 (3500) B -1.724 (-250.06)
: S

i 25.86 (3750) 0.79 8s -1.628 (-236.06)
27.58 (4000) 0.43 8 -1.467 (-212.70)

S

i:I

-i
I r

r "
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FIGURE CAPTIONS

i 1. Initial Strain History in Creep T,Jst

! 2. Constant-Strain_Rate Stress-Strain Curves of Aluminum 1100-0 at 150"C
i

(300°F) - Specimens Group I

3. Strain-Rate Sensitivity Function k for Group I

'_ 4. Creep Curves for Alumlnum 1100-0 at 150°C (300°F) - Specimens Group I

_ 5. Constant-Strain-Rate Stress-Strain Curves of Aluminum 1100-0 at 150°C

(300°F) - Specimens Group II

6. Strain-Rate Sensitivity Function k for Group II

7. Creep Curves for Aluminum 1100-0 at 150°C (300°F) - Specimens Group II
/

8. Creep Recovery Curve for Aluminum 1100-0 at 150°C (300°F) - Test I _ -

9. Creep Recovery Curves for Aluminum ii00-0 at 150°C (300"F) - Tests II

! and III

10. Theoretical Stress__"Curves

J

: I

• B
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